首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   81篇
  免费   4篇
测绘学   1篇
大气科学   23篇
地球物理   28篇
地质学   21篇
海洋学   4篇
天文学   5篇
综合类   1篇
自然地理   2篇
  2022年   2篇
  2021年   1篇
  2020年   1篇
  2019年   2篇
  2018年   7篇
  2017年   8篇
  2016年   6篇
  2015年   7篇
  2014年   3篇
  2013年   4篇
  2012年   6篇
  2011年   6篇
  2010年   3篇
  2009年   3篇
  2008年   1篇
  2007年   2篇
  2006年   1篇
  2005年   1篇
  2003年   1篇
  2002年   1篇
  1999年   1篇
  1997年   3篇
  1995年   1篇
  1992年   1篇
  1991年   1篇
  1988年   2篇
  1985年   1篇
  1982年   1篇
  1979年   2篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1974年   1篇
  1973年   1篇
  1970年   1篇
排序方式: 共有85条查询结果,搜索用时 15 毫秒
81.
82.
A salient feature of sea level records from the Adriatic Sea is the frequent occurrence of energetic seiches of period about 21 h. Once excited by a sudden wind event, such seiches often persist for days. They lose energy either to friction within the Adriatic, or by radiation through Otranto Strait into the Mediterranean.The free decay time of the dominant (lowest mode) seiche was determined from envelopes of handpassed sea level residuals from three locations (Bakar, Split and Dubrovnik) along the Croatian coast during twelve seiche episodes between 1963 and 1986 by taking into consideration only time intervals when the envelopes decreased exponentially in time, when the modelled effects of along-basin winds were smaller than the error of estimation of decay time from the envelopes and when across-basin winds were small. The free decay time thus obtained was 3.2±0.5 d. This value is consonant with the observed width of the spectral peak.The decay caused by both bottom friction and radiation was included in a one dimensional variable cross section shallow water model of the Adriatic. Bottom friction is parameterized by the coefficient k appearing in the linearized bottom stress term ρ0u (where u is the along-basin velocity and ρ0 the fluid density). The coefficient k is constrained by values obtained from linearization of the quadratic bottom stress law using estimates of near bottom currents associated with the seiche, with wind driven currents, with tides and with wind waves. Radiation is parameterized by the coefficient f appearing in the open strait boundary condition ζ =auh/c (where ζ is sea level, h is depth and c is phase speed). This parameterization of radiation provides results comparable to allowing the Adriatic to radiate into an unbounded half plane ocean. Repeated runs of the model delineate the dependence of model free seiche decay time on k and a, and these plus the estimates of k allow estimation of a.The principle conclusions of this work are as follows.
1. (1) Exponential decay of seiche amplitude with time does not necessarily guarantee that the observed decay is free of wind influence.
2. (2) Winds blowing across the Adriatic may be of comparable importance to winds blowing along the Adriatic in influencing apparent decay of seiches; across-basin winds are probably coupled to the longitudinal seiche on account of the strong along-basin variability of across-basin winds forced by Croatian coastal orography.
3. (3) The free decay time of the 21.2 h Adriatic seiche is 3.2±0.5 d.
4. (4) A one dimensional shallow water model of the seiche damped by bottom stress represented by Godin's (1988) approximation to the quadratic bottom friction law ρ0CDu|u| using the commonly accepted drag coefficient CD = 0.0015 and quantitative estimates of bottom currents associated with wind driven currents, tides and wind waves, as well as with the seiche itself with no radiation gives a damping time of 9.46 d; radiation sufficient to give the observed damping time must then account for 66% of the energy loss per period. But independent estimates of bottom friction for Adriatic wind driven currents and inertial oscillations, as well as comparisons between quadratic law bottom stress and directly measured bottom stress, all suggest that the quadratic law with CD=0.0015 substantially underestimates the bottom stress. Based on these studies, a more appropriate value of the drag coefficient is at least CD=0. In this case, bottom friction with no radiation leads to a damping time of 4.73 d, radiation sufficient to give the observed damping time then accounts for 32% of the energy loss per period.
  相似文献   
83.
Summary The paper deals with the influence of the atmospheric pressure variations on Sharpe gravimeters CG 2 No. 226 and 280 and on the Worden gravimeter No. 978, equipped with a thermostat.Dedicated to RNDr. Jan Pícha, CSc., on his 60th Birthday  相似文献   
84.
The red king crab Paralithodes camtschaticus was introduced to the Barents Sea from the North Pacific in the 1960s. A previous study concluded that it may be indirectly responsible for increased transmission of Trypanosoma murmanense to cod Gadus morhua in the southern Barents Sea by promoting an increase in the population of the leech vector Johanssonia arctica. Eleven species of fish, totalling 681 individuals, caught in October 2002 along the coast of Finnmark, were examined for trypanosome infections. The aims were to investigate changes in levels of infection in cod since 1999–2001, and to extend the sampling to other fish species. Relatively high infection levels were found in cod, haddock Melanogrammus aeglefinus and long rough dab Hippoglossoides platessoides, while other species were lightly infected or uninfected. In cod, no significant geographical differences in levels of infection were found, but haddock were significantly more heavily infected in western Finnmark.  相似文献   
85.
Arsenic and antimony contamination is found at the Pezinok mining site in the southwest of the Slovak Republic. Investigation of this site included sampling and analysis of water, mineralogical analyses, sequential extraction, in addition to flow and geochemical modeling. The highest dissolved arsenic concentrations correspond to mine tailings (up to 90,000 μg/L) and the arsenic is present predominately as As(V). The primary source of the arsenic is the dissolution of arsenopyrite. Concentration of antimony reaches 7,500 μg/L and its primary source is the dissolution of stibnite. Pore water in mine tailings is well-buffered by the dissolution of carbonates (pH values between 6.6 and 7.0) and arsenopyrite grains are surrounded by reaction rims composed of ferric iron minerals. Based on sequential extraction results, most solid phase arsenic is in the reducible fraction (i.e. ferric oxyhydroxides), sulfidic fraction, and residual fraction. Distribution of antimony in the solid phase is similar, but contents are lower. The principal attenuation mechanism for As(V) is adsorption to ferric oxide and hydroxides, but the adsorption seems to be limited by the competition with Sb(V) produced by the oxidation of stibnite for adsorption sites. Water in mine tailings is at equilibrium with gypsum and calcite, but far from equilibrium with any arsenic and antimony minerals. The concentrations of arsenic and antimony in the surrounding aquifer are much lower, with maximum values of 215 and 426 μg/L, respectively. Arsenic and antimony are transported by ground water flow towards the Blatina Creek, but their loading from ground water to the creek is much lower compared with the input from the mine adits. In the Blatina Creek, arsenic and antimony are attenuated by dilution and by adsorption on ferric iron minerals in stream sediments with resulting respective concentrations of 93 and 45 μg/L at the site boundary south of mine tailing ponds.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号